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The stability of laminar and turbulent channel flow is examined for cases where 
Coriolis forces are introduced by steady rotation about an axis perpendicular to 
the plane of mean flow. Linearized equations of motion are derived for small 
disturbances of the Taylor type. Conditions for marginal stability in laminar 
Couette and Poiseuille flow correspond, in part, to the analogous solutions of 
buoyancy-driven convection instabilities in heated fluid layers, and to those of 
Taylor instabilities in the flow between rotating cylinders. In  plane Poiseuille 
flow with rotation, the critical disturbance mode occurs at  a Reynolds number of 
Rec = 88.53 and rotation number 220 = 0.5. At higher Reynolds numbers, un- 
stable conditions canexist over the range of rotation numbers given by 0 < Ro < 3, 
provided the undisturbed flow remains laminar. A two-layer model is devised to 
investigate the onset of longitudinal instabilities in turbulent flow. The linear 
disturbance equations are solved essentially in their laminar form, whereby the 
velocity gradient of laminar flow is replaced by a numerically computed profile 
for the gradient of the turbulent mean velocity. The turbulent stress levels in 
the stable and unstable flow regions are represented by integrated averages of 
the eddy viscosity. Onset of instability for Reynolds numbers between 6000 and 
35 000 is predicted to occur at  Ro = 0.022, a value in remarkable agreement with 
the experimentally observed appearance of roll instabilities in rotating turbulent 
channel flow. 

1. Introduction 
In  recent studies of rotating laminar and turbulent channel flow, stabilizing 

and destabilizing phenomena have been observed that are, in some respects, 
closely related to the well-known destabilization of the flow between rotating 
cylinders into Taylor vortex cells. In  the flow between rotating cylinders, im- 
balance between the centrifugal force and the local pressure gradient results in 
instability with respect to radial fluid exchange. Analogously, the rotating linear 
shear flow, whose mean vorticity vector is parallel to the rotation vector, 
becomes unstable when the Coriolis force on a perturbed fluid particle is 
not balanced by the local pressure gradient across streamlines. The necessary 

t Present address: Lockheed Pa10 Alto Research Laboratory, California. 
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Low-oressure side 

High-pressure side 

FIGURE 1. Stable and unstable regions in rotating channel flow, indicating the asymmetry 
of the turbulent mean velocity profile u t ( y )  when f2 > 0. 

conditions leading to instability of the inviscid flow (Bradshaw 1969; Pedley 
1969) are satisfied locally when 

2Q(dU/dy- 2Q) > 0. 

d U/dy is the transverse gradient of the mean velocity, measured in the rotating 
system; !2 is the rate of angularrotation of the system. (Refer to figures 1 and 14.) 
The condition above corresponds to Rayleigh’s inviscid stability criterion for flow 
along concentric circular streamlines. It requires a positive radial gradient of 
circulation for stability of the inviscid flow. Since - (dU/dy - 2Q) represents the 
absolute vorticity of the rotating plane flow in inertial co-ordinates, the necessary 
requirement for instability is satisfied if the absolute vorticity is negative some- 
where within the flow. This criterion is not sufficient for predicting instabilities 
in real fluids, however, since the onset of roll instabilities is delayed by the effects 
of viscous friction. As will be seen in $4, critical conditions are delayed even 
further by the effects of turbulent friction. Nevertheless, the inviscid condition 
remains useful in establishing the potential for local fluid stability in the two wall 
regions of fully-developed channel flow. The criterion predicts instability near 
the high-pressure wall for moderate !2 (i.e. dD/dy > 2Q > 0) ,  and stability near 
the opposite wall, where dU/dy < 0. The line of neutral stability occurs where 
vorticity measured in inertial space is zero. 

The tendency of two-dimensional laminar and turbulent shear flows with 
rotation to become unstable to streamwise disturbances of Taylor’s type, here 
denoted as roll cells, has been known for some time. The original observation of 
this phenomenon was made by Halleen & Johnston (1967), who detected a rela- 
tively large-scale, streamwise structure that was embedded in the turbulent flow 
near the high-pressure wall of a rotating channel apparatus. Subsequent visualiza- 
tion experiments on rotating flow by Lezius & Johnston (1971) showed con- 
clusively the presence of counter-rotating vortex cells when critical angular 
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rotation rates wereexceeded. Near the conditionsrequiredfor onset of instabilities, 
the superimposed secondary flow is of small magnitude, and does not significantly 
disturb the two-dimensionality of the turbulent mean flow. In  the supercritical 
regime (i.e. at rotation rates considerably larger than critical), however, strong 
nonlinear interaction between the turbulent flow and the instability causes 
significant three-dimensional distortions. The velocity measurements of Halleen 
& Johnston (1967) also indicated that, in the subcritical regime (at small rates 
of rotation in the absence of roll cells), the mean velocity profile of fully-developed 
turbulent channel flow becomes asymmetrical, as shown in figure 1. The asym- 
metry arises from the effects of the Coriolis force field upon the mechanisms that 
produce turbulence energy and Reynolds stress. These features are summarized 
in Johnston, Halleen & Lezius (1972), and will not be reviewed in detail. Because 
of their importance to our later consideration of roll-cell instabilities, we mention 
only that, at high rates of rotation, complete suppression of local turbulence 
production by the Coriolis field was observed near the low-pressure wall, resulting 
in a laminar wall layer. Near the high-pressure wall, Coriolis forces tended to 
further destabilize the turbulent flow by amplifying the rate of turbulence pro- 
duction and local shearing stresses. 

In  this paper, we shall employ linear theory for disturbances of small magni- 
tude, to predict the onset of longitudinal roll-cell instabilities in laminar and in 
turbulent channel flow. Hart (1971) presented such an analysis for the laminar 
case, together with experimental measurements of the critical conditions re- 
quired for the onset of instabilities. Although Hart’s numerically computed 
stability boundary lies within a region that separates the experimentally ob- 
served stable and unstable states, his numerical results predict stability of the 
flow to higher Reynolds numbers for given angular rotation when compared 
with the results of ow own numerical computations for the marginal stability 
of laminar Poiseuille flow, and also by comparison with the results of Chandrase- 
khar (1961 a, p. 304) for a rotating cylinder. It turns out that the solutions for 
marginal stability of this type of channel flow are easily derived from Chandrase- 
khar’s eigensolutions to the mathematically analogous disturbance equations for 
Taylor flow within a small gap, when one expresses the Taylor number in terms 
of the parameters governing the rotating plane Poiseuille flow. 

The analysis for the turbulent case is complicated by the fact that the mean 
velocity profile and the distribution of turbulent friction become asymmetrical 
with respect to the channel centre-line when rotation is increased from zero. 
Since the mean velocity profile determines local stability, and since fluid friction 
exerts a damping influence on convection instabilities, the effects of asymmetrical 
profiles for the meanvelocity and for the turbulent shear stresses must be included 
in a realistic analysis. In  Lezius & Johnston (1971), predictions of asymmetrical 
turbulent velocity profiles were successfully based on a variable eddy viscosity 
model, that received some input from measured data. These features are incor- 
poratedinto the present analysis, by adopting a two-layer model for the turbulent 
flow in which the mean velocity varies smoothly; but the turbulent viscosity is 
represented by an appropriate constant average in each layer. 

A question may be raised as to the validity of a linear analysis for small dis- 
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turbances in a flow that already contains nonlinearly interacting disturbances: 
i.e. turbulence. In  answer, it  may be pointed out that any two-dimensional 
turbulent flow will eventually yield to the application of destabilizing force 
fields, and develop steady, three-dimensional motions. Since the essential purpose 
of the stability analysis is to predict the force levels required for this yielding, it 
is necessary only to  describe the apparent resistance of the fluid to sustained 
shearing motions of small magnitude. In  our case, this resistance is represented 
by a suitable eddy-viscosity model. It is also believed that interference by the 
turbulent fluctuations with onset of the instability becomes less important if the 
length scale of the latter is large compared with the length scales of the fluctuating 
components of the flow. Although the length scales of the turbulent ‘eddies’ 
are considerably smaller, over a large portion of the turbulence spectrum, than 
those of the roll instability, the largest eddies encountered in this flow have 
length scales approaching 2 0 ,  the scale of the roll cells. Since the turbulence 
lacks stationary, organized structure, however, it  is simply transported with the 
disturbance, as shown in Johnston et al. (1972, figure 12 ( b ) ) .  The turbulent mean 
flow is therefore assumed to be maintained by sufficiently random and homo- 
geneous velocity fluctuations; its stability to Coriolis effects, furthermore, is 
determined predominantly by the apparent viscosity of the flow, not by the 
size or structure of the turbulent eddies. 

2. Analysis for small disturbances 
2.1. Equations of the basicJEow 

The non-dimensional equations of motion of viscous and incompressible plane 
flow between semi-infinite walls in rotation about a spanwise axis are 

au, 
- 0, ax, _ -  

+-- 
axt Re axi axi 

(See Lezius & Johnston 1971.) The Coriolis acceleration terms in square brackets 
result from the vector product 2Roi, x u. I n  these equations, the Cartesian co- 
ordinates are non-dimensionalized by 2 0 ,  whereas the velocity components are 
scaled upon the integrated average velocity U,. The effects of centrifugal 
acceleration are absorbed in the pressure term. (See Johnston et al. 1972.) The 
resulting reduced pressure is then non-dimensionalized by p Uk.  The governing 
parameters of this flow, the Reynolds number and rotation number, are defined by 

Re = Um2D/v, Ro = !22D/U;,. (3,) (4) 

Using appropriate boundary conditions a t  the walls, x2 = 0 and x2 = 1, it  
is readily shown that rotating Couette and Poiseuille flow are identical to solu- 
tions of (1) and (2) for Ro = 0. In  both cases, the basic undisturbed flow remains 
unaffected by rotation, but the Coriolis acceleration gives rise to a pressure 

(5) gradient in the x, direction ap/ax2 = - 2~~ zG1. 



Roll-cell instabilities in rotating channel JEows 157 

2.2. Linearized disturbance equations 
We are seeking the critical conditions for the onset of infinitesimal disturbances 
of velocity Ci and pressure f3, and assume that they are superimposed upon the 
basic flow, described by V, and P*. Instantaneous velocities and pressure are 
thus written as 

Substituting (6) and ( 7 )  into ( 2 ) ,  and subtracting the terms of the basic flow 
which satisfy 

u, = ui+e,, p = P*+@. (61, (7) 

ap* i a 2 q  
- 2 RO U2 

u . 3 ,  3 ax, [ 2yl] = --+-- ax, Re ax, ax, 

yields the time-dependent disturbance equation 

Equation (9) is linearized by neglecting products of the disturbances. Further- 
more, we limit consideration to two-dimensional, fully-developed channel flow 
(U, = U, = 0) ,  so that 

The latter term is combined with the corresponding rotation terms, to give the 
linearized disturbance equations in the form 

The equation of continuity (1) is satisfied by 

ac,lax, = 0. (11 )  

( 1 2 )  

Appropriate boundary conditions for channel flow are 

C,(O) = C&1) = 0. 

Equations (lo)-( 12)  constitute a complete set for the perturbation velocities 
.ii, and the perturbation pressure field f3. Depending upon the distribution of U; 
through the fluid layer, the solutions of these equations yield the flow conditions, 
Re  and Ro,  for which the assumed disturbance can exist. 

We note here the coupling of the x, component of the disturbance to the 
absolute vorticity of the basic flow 

< = - (U;-2Ro) .  

It will be shown subsequently that disturbances are not amplified by the Coriolis 
field in the invisoid flow, unless this quantity is negative over a fluid layer of 
finite thickness. 
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2.3. Roll-cell disturbance modes 

Since the disturbance equations (10) are represented by a set of linear differential 
equations with constant coefficients, the solutions are sought in terms of normal 
modes exp(iaz3), where a is the spanwise roll frequency. Although general 
Taylor-type instabilities exhibit streamwise variation in certain supercritical 
states, linear analysis customarily assumes disturbances without longitudinal 
modes. In  Hart (1971) this assumption was based upon experimental evidence. 
Rigorous proof was given by Joseph (1966), however, that the lowest critical 
conditions for longitudinal rolls in Boussinesq fluids (e.g. plane fluid layer heated 
from below with Couette flow profile) are obtained when the streamwise modes 
are absent. By physical and, hence, mathematical analogy, this proof also holds 
for rotating Couette flow; but we assume that it is generally valid for Coriolis- 
driven disturbances of a larger class of parallel shear flows, including the 
Poiseuille flow. 

The normal-mode description of the disturbance is thus given by 

[Zi, $1 = ${[&,(x,), @(x2)] exp (iax, + d) + complex conjugate). (13) 

a, and @ are eigenfunctions of the disturbance field; and v is the inverse time 
constant of the spanwise mode a. Substitution of (13) into (10) results, after 
elimination of the pressure and incorporation of (1 1), in a set of ordinary differen- 
tial equations for the eigenfunctions of the streamwise and transverse disturbance 
velocities: 

[v - Re-l(D2 - a,)] a( y) + ( U' - 2 Ro) 8( y) = 0, (14) 

[u-Re-l(D2-a2)] (D2-a2)8(y) -a22Ro&(y)  = 0. (15) 

For convenience, we changed the notation to 

xg = [x, y,z], d/dx, = D, Q1,O2 = a,@ and U; = U'. 

Appropriate boundary conditions are expressed in (12). Since the spanwise 
velocity component has been eliminated, an additional condition on 8 can be 
derivedfrom (1 1) after substitution of ( 1  3). It follows that, at the solid boundaries, 

&(O) = Q(1) = 8(0) = O(1) = DO(0) = De(1) = 0. (16) 

For the general case, the eigenvalues CT of the problem posed by (14)-(16) 
give the exponential growth rate of the disturbance mode u for chosen values of 
Re and Ro. Negative u, of course, signify a damped disturbance, and hence 
stability of the flow to the mode a. Since we are interested in marginal stability 
(cr = 0) ,  we seek the eigenmodes a(Re, Ro)  for which the system of equations has 
solutions. 

3. Dynamically similar solutions 
3.1. Laminar Couette $ow 

Hart (1971) pointed out the dynamical similarity between longitudinal roll 
instabilities in a rotating rectangular channel and convection instabilities in a 
fluid layer heated differentially from below. Although the frequently observed 
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hexagonal BBnard cellst of the thermal problem lack direct physical similarity 
to roll cells of the Taylor type, equivalence of the linearized disturbance 
equations and boundary conditions yields identical results, in terms of the 
governing parameters for the onset of instabilities. The neutral stability boundary 
for Couette flow, in terms of Re and Ro, can thus be calculated from the well- 
known critical Rayleigh number Ra = 1708, computed by Pellew & Southwell 
(1940). This result was also obtained by Hung, Joseph & Munson (1972), by 
considering rotating plane Couette flow as a limiting case of Couette flow between 
rotating cylinders. 

It will subsequently be shown that complete physical and dynamical similarity 
exists between rotating Couette flow and the differentially-heated linear Couette 
flow, the case considered by Joseph (1966). Since hydrodynamically identical 
conditions are established in the rotating as well as in the heated flow by the 
presence of a linearly-varying body force field, identically shaped streamwise 
roll cells occur when the stability parameter exceeds the value of 1708. The re- 
lationship between the corresponding parameters is demonstrated by first 
combining (14 )  and (15) into a sixth-order differential equation for the eigen- 
function of the @(y) component. Incorporating the Couette flow gradient U' = 2 
produces the result 

(.D2-a2-~Re)2(D2-a2)@(y)+a24RezRo(l -Ro)O(y) = 0. (17) 

(18) 

The equivalent differential equation and boundary conditions for marginally 
stable disturbances in the thermal problem (indicated by subscript th) have the 
form 

and 

The boundary conditions are satisfied by 

O = DO = (D2-2a2-c~Re)D% = 0, y = 0 , l .  

(D2--E)38(Z)+k~(RU+Re2), ,~(Z) = 0 (19 )  

8 = D 8  = (D2-2kE)D28 = 0, z = 0, 1 (20) 

(following Joseph 1966). 8 ( z )  is the eigenfunction of the disturbance component 
normal to the fluid boundaries. For Re,, = 0, the above problem reduces, of 
course, to that of BBnard convection. 

The similarity between the disturbance equations for the rotating and for the 
heated Couette flow are easily recognized. Thus, the neutrally stable state 
(a = 0)  has the corresponding solutions 

4Re2Ro(l-Ro) = Ra+Re&, = 1708, ( 2 1 )  

with a, = Ic, = 3.1 for the critical cell number. The lowest critical value of the 
Reynolds number occurs at Ro = 0.5 when Re, = 41.3. Below Re,, all distur- 
bance modes are damped, regardless of the value of Ro. This conclusion also 
carries over by analogy via Joseph's (1966) proof of the impossibility of sub- 
critical unstable states. 

t Other possible modes of thermal convection instabilities are linear and concentric 
roll cells. 
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The analogies can be further exploited to yield answers to questions of over- 
stability and the range of the stability parameter. These issues were resolved by 
Chandrasekhar ( i96 ia ,  p. 24) for B6nard convection, with the result that CT 
can assume only real values, commonly known as the principle of exchange of 
stabilities. The strictly mathematical proof applies equally to (17) and (18). 
It is therefore concluded that, in the marginally stable state, longitudinal roll 
instabilities in rotating Couette flow remain stationary. Since, furthermore, 
marginally stable solutions to the Rayleigh problem are shown to exist for only 
positive values of Ra, the solutions of (17) and (18) are limited to the region 
ReZRo( i - Ro) > 0. The expression Ro( i - Ro) is recognized as the non-dimen- 
sional form of Rayleigh's discriminant for plane Couette flow, which by the 
condition that i t  be positive restricts the range of the allowable rotation number 
to 0 < Ro < 1. This requirement, furthermore, establishes the necessary con- 
dition that the absolute vorticity , given in non-dimensional co-ordinates by 
- 2( i - Ro), be negative somewhere within the fluid layer for instabilities to 
occur. In  the case of Couette flow, it has a constant negative value throughout. 
The condition is not sufficient, however. Although reversed rotation Ro < 0 
introduces more negative vorticity, it obviously violates the requirement that 
Re2Ro( 1 - Ro) > 0. Thus, the latter constraint provides the sufficiency condition 
for instabilities in an inviscid rotating, plane Couette flow. 

3.2. Laminar Poiseuille $ow 
Because of the symmetry of the Poiseuille flow profile, the necessary condition 
for instabilities (i.e. that the absolute vorticity be negative over a finite region 
of the flow) is satisfied for certain magnitudes of Ro, regardless of the sense of 
rotation. When in addition the Rayleigh discriminant has positive values in the 
same region, instabilities can be expected to occur. 

There are two physical analogues to the problem of stability in rotating plane 
Poiseuille flow: the internally-heated fluid layer considered by Debler (1966), 
and the flow within the narrow gap between rotating cylinders (Chandrasekhar 
1961 a, p. 298). Debler noted the correspondence between the two problems, and 
derived solutions for the thermal problem from Chandrasekhar's computations. 
Similarly, our own computations for marginal stability of the Poiseuille flow are 
directly comparable with those of Chandrasekhar. Certain asymptotic results 
and the principle of exchange of stabilities for the rotating cylinder case also 
apply directly to the problem under consideration. 

The basic undisturbed velocity profile of plane Poiseuille flow is 

U(Y) = 6(Y-Y2) 
with velocity gradient 

U'(y)  = 6(1- 2 ~ ) .  

Substituting (23) into (14) and combining with (15) results in the sixth-order 
disturbance equation 

( 0 2  - a2 - CT Re)2 ( D2 - a2) 0 + a24 Re2 Ro( 3 - Ro) 1 - - y) O =  0, (24) ( 3-Ro 
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FIGURE 2. Neutral stability curves for laminar plane Poiseuille flow with rotation for 
(a) Ro 6 0.5, and ( b )  Ro 2 0.5. 
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FIGURE 3. Critical Reynolds numbers for neutral stability in laminar plane Poiseuille flow. 
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FIGURE 4. Critical cell frequency cc, for neutral stability in laminar plane Poiseuille flow. 

which is arranged to emphasize the similarities with the disturbance equations 
of the analogous problems. The boundary conditions ( 1 8 )  remain unchanged. 
The equivalent differential equation for the rotating cylinder problem is obtained 
by combining the disturbance equations for the radial and tangential velocities 
given by Chandrasekhar (1961a, p. 299) into one differential equation for 
the eigenfunctions of the tangential velocity 6(c) with corresponding boundary 
conditions 

P 5 a )  

(25b) 

( P - a 2 -  ( r ) 2  ( 0 2 -  a2) v" + a2Tu[l- (1 - p )  C}] v" = 0, 

v" = D2v" = ( D 2 - a 2 - g )  Dv" = 0, 5 = O,1. 
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F I G m E  5. Stability in laminar plane Poiseuille flow. (a )  Critical eigensolution, Ro = 0-5, 
Re, = 88.5; ( b )  critical stream function, u = 4-9. In the left panel of ( b ) ,  contours represent 
$ = 0.1 (0.1) 1.0; in the right, $ = -0.005, -0.01. (c) Critical eigensolution, Ro = 1.5, 
Re, = 179.2; (d)  critical stream function, a = 7.8. In the left panel of (d), contours repre- 
sent $ = 0.1 (0.1) 1.0; in the centre, @ = - 0.01 (0.005) - 0.03. In ( e ) ,  0 indicates the two 
points associated with (a) ,  (b )  and (c), (d). 

Ta is the Taylor number, ,u the ratio of the angular velocities of the two 
cylinders, and 6 is the normalized radial co-ordinate measured from the inner 
cylinder toward the outer one. 

The similarity of (24) to (25a) for the marginal case (cr = 0) is immediately 
apparent, although the boundary conditions do not appear to bear this same 
characteristic. In  spite of this, the analogy remains intact. Following a straight- 
forward analysis of adjoint differential systems by Chandrasekhar (1961 b ) ,  
one can show that the two problems are adjoint (i.e. the characteristic equations 

11-2 
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FIGURE 6. Solutions for neutrally stable roll-cell disturbances between rotating cylinders 
and in rotating plane Poiseuille flow ; 0, laminar Poiseuille flow, present cdculations ; 
-.- , Hart (1971); __ , Taylor problem, Chandrasekhar (1961 6 ) .  

for Ta and 4Re2Ro(3 - Ro)  are transposes of each other), thus having the same 
eigenvalues. In  terms of the analogy, then, the two problems yield the same 
values for the critical cell frequencies a,, when, simultaneously, 

4Re2Ro(3-Ro)  = Tu and 6 / ( 3 - R 0 )  = 1-y. (26) ,  (27 )  

Before discussing neutrally stable solutions, we shall briefly consider the 
validity of the principle of exchange of stabilities for this case. Because of the 
variable coefficient in (24 ) ,  the disturbance equations are not self-adjoint, and 
the usual proof that the eigensolutions admit only real values of cr cannot be 
carried through. Chandrasekhar concluded, however, that, since the character- 
istic values for the rotating cylinder problem are nearly independent of 1 -y ,  
exchange of stabilities is satisfied in the narrow-gap approximation of the rotating 
cylinder case. Thus, the mathematical correspondence between the disturbance 
equations (24 )  and (25 )  leads to the same conclusion with respect to the neutral 
state of rotating Poiseuille flow. 

Neutrally stable solutions of (24 ) ,  (18 )  within the admissible range of Ro have 
been computed numerically for various values of the cell number a. (For details 
of the numerical procedure, see Lezius 1975.) As illustrated in figure 2, a large 
range of marginally stable cell modes results for given Re or Ro. In  an experiment, 
however, only the critical, or most unstable, modes are usually observed. These 
occur at the lowest Reynolds number, along the stability boundary, for each 
selected value of Ro. The critical states are summarized in one curve in figure 3. 
It is noted that the lowest critical Reynolds number (Re, = 8 8 6 3 )  occurs at 
Ro = 0.5. In  the limit R o  -+ 0, Re, N Ro-4. This result obtains directly by analogy, 
from the critical Taylor number for y = - 1 ,  Ta, = 1.868 x lo4, and from the 
fact that in the regime of small rotations a, is independent of Ro. (See figure 4.)  
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Limiting values for Re, and a, as Ro+ 3 are also derived by analogy from 
Chandrasekhar’s asymptotic solutions for (1 -p) -+a: 

Tu, - (1 -,u)~ and ac - (1 -p) .  

Substitution from (26) and (27) yields 

Re, - ( 3  - Ro)-) and a, - ( 3  - Ro)-’. 

As Ro -f 3, the layer of negative vorticity vanishes at the y = 0 boundary, 
leaving the entire fluid in a stabilized state. Marginal stability in this limit re- 
quires infinite Coriolis forces, as indicated in figure 3 by the asymptotic trend of 
Re,. 

Critical eigenfunctions and stream functions of the induced cellular flow are 
shown in figure 5 for Ro = 0.5 and 1-5, respectively. The most critical disturbance 
mode a, = 4.9 has a spanwise cell thickness (half-period) of approximately 0.64 
times the channel width. 

Direct comparison of our finite-difference solutions with Chandrasekhar’s 
series approximations is made in figure 6. Also shown are the solutions by Hart 
(1971),t which were obtained by the Galerkin method. The differences in the 
numerical results are believed to arise from the singular nature of the distur- 
bance equations. Chandrasekhar noted that, for p < - 3, solutions of acceptable 
accuracy would require an increasing number of approximations. In  our own 
computations, numerical difficulties developed when a > 8 and Ro > 1.5. In  
the range of small Ro, numerical instabilities occurred when a > 15. 

4. Two-layer model of turbulent flow 
Certain assumptions and simplifications need to be made before the neutral 

stability of turbulent flow can be examined. For one, the existence of a neutral 
state in the conventional sense is rather questionable. Experimentally, it is 
quite difficult to detect the exact point of onset of instabilities in a flow with 
turbulent fluctuations much larger in magnitude than the initial disturbance 
amplitude. On the other hand, our observations of stable and unstable states, 
reported in Johnston et ul. (1972), imply at  least the existence of a transition 
regime which can be assumed equivalent to the neutral state. In  carrying out an 
analysis such as was done for the laminar flow, a realistic description of the 
turbulent mean flow properties must include the effects of rotation not present 
in the laminar case. These are the asymmetry of the mean velocity profile, and 
the contribution of an apparent eddy viscosity vt to turbulent stresses that are 
expected to inhibit formation of the instability. As indicated by the general 
disturbance equations (14) and (15), these features of mean flow enter into the 
analysis through the mean velocity gradient of the turbulent flow U;, and 
through the Reynolds number. 

t Hart’s solutions were originally presented in terms of the Rossby number (0.75 Ro-l) 
and the Ekman number (0.5 Re-lRo-l). They have been transformed to conform to the 
non-dimensional parameters chosen here. 
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FIGURE 7. Comparison of predicted turbulent mean velocity profiles (-) with measure- 
ments (symbols) by Halleen & Johnston (1967), for rotating channel flow. Ut = a,/U,,,, 
A+ = 29, K = 0.45, /3 = 4. 
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FIQURE 8. Comparison of experimentally deduced (symbols) with predicted (A?') eddy 
vkcosity profiles. & = 1 + vt(y)lv, At = 29, K = 0-45, /3 = 4 
Re 35 300 35 300 35 800 
Ro 0.042 0.042 0.082 
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A semi-empirical prediction scheme for the asymmetrical turbulent mean flow 
with rotation was reported in Lezius & Johnston (1971), where velocity profiles 
were computed for the Reynolds numbers and levels of rotation Ro investigated 
experimentally by Halleen & Johnston (1967). The agreement of the velocity 
measurements (reported in Johnston et al. 1972) with the predicted profiles is 
shown in figure 7 for the case Re M 35 000. Similar agreement was obtained with 
velocity profiles measured a t  Re M 11 400 and 0 < Ro < 0.117. The equations of 
turbulent mean motionwere closedwith a modifiedversion of the Cess (1958) eddy 
viscosity model for channel flow, to account for the asymmetrical effects of 
Coriolis forces upon the production of turbulent stresses in the stabilized and 
destabilized flow regions. (See appendix.) In  figure 8, we compare eddy viscosity 
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profiles deduced from experimental data with those computed (A 7) for the 
velocity profiles shown in figure 7. It is noted that the general rise of eddy 
viscosity with Reynolds number is accompanied by large stabilizing and de- 
stabilizing effects of rotation, which locally reduce or increase E correspondingly, 
via the direct effect of mean rotation upon local rate of turbulence production. 
For detailed discussion of these effects, the reader is referenced to Lezius & 
Johnston (1971) and Johnston et al. (1972). 

Although UL(y) and vt(y)/v are known numerically, we cannot immediately 
proceed with the stability analysis, since (17) and (18) were derived for a constant 
viscosity coefficient. Retaining variable eddy viscosity, on the other hand, 
would not only increase the complexity of the disturbance equations consider- 
ably, but also introduce new uncertainties by requiring higher-order derivatives 
of v,(y)/v. Considerable simplification of the stability problem is thus achieved 
by assuming that the fluid is composed of two layers, whereby in each layer, 
the effects of eddy viscosity are represented by the integrated average of v,(y)/v 
over the layer thickness. The model therefore implies physically that a t  onset 
of instabilities, the destabilizing inertial stresses due to Coriolis forces are balanced 
by a corresponding average of the turbulent stresses in the layer. This assumption 
appears reasonable since the disturbance spans essentially the entire layer 
thickness. Hence, we define the total viscosity ratios 

In  figure 9, the corresponding average values el and c2 of the two-layer model are 
indicated with respect to the computed distribution of ~ ( y )  for the case of 
Re  = 35200, R o  = 0.042. The plane y1 that divides the two layers is located 
where the slope of the predicted mean velocity profile is zero. Although is 
discontinuous at yl, the turbulent mean shear stress remains continuous, because 
at this point U; = 0. 

The effects of turbulent friction enter into the analysis through the Reynolds 
number; and, having absorbed these effects in we can now define equivalent 
turbulent Reynolds numbers for the unstable and stable regions, respectively: 

Re,,, 2 = urn 2D/(v +%I, 2) = Re/%, 2. 

The disturbance equations (14)-( 16) are thus combined, to give 

2 
( D 2 -  a2 - ge) (P- a 2 )  6(y) + a22y R0 (Ud - 2220) 6(y) = 0, (29) 

81.2 %,2 

It is seen that, for this two-Iayer model with piecewise constant B, the disturbance 
equations are essentially identical to those for laminar flow, although they 
retain the salient features of the turbulent mean velocity profile and the difference 
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FIGURE 9. Definition of average total viscosity for two layer model of rotating, turbulent 
channel flow. ~ ( y )  = I + v,(y) /v  calculated for Re = 35300 and Ro = 0.042. 

in total viscosity in the stable and unstable regions. Equation (29) clearly indi- 
cates the strong damping character that is contributed by the turbulent viscosity. 
The effect of increasing E ,  as the flow is rendered more turbulent at larger Rey- 
nolds numbers, will be to delay the onset of instabilities to considerably higher 
values of critical Ro than would be predicted by using the laminar viscosity 
alone. This point will be discussed further when we consider the physical impor- 
tance of the turbulent Reynolds number in connexion with the numerical results. 
It should also be pointed out that the stability of the flow will be influenced by 
the fact that the mean vorticity - ( U' - 2 Bo) is no longer a linear relationship in y, 
as was the case for laminar flow, but depends in a complicated manner upon Re 
and Ro. 

Numerical solutions for the onset of instabilities (cr = 0) were initiated by 
first computing profiles of U$(y) and of the average total viscosities el and e2. 
(See appendix, (A l).) Subsequently, solution of the disturbance equations fol- 
lowed along the same lines as for the laminar case. The results of these computa- 
tions for Reynolds numbers ranging from 2000 to 35 000 are shown in figure 10; 
the corresponding critical rotation numbers Roc and spanwise cell numbers a, 
are listed in table 1. It is interesting to note that the predicted onset of instabili- 
ties in fully-turbulent flow (Re > 6000) is restricted to a narrow range of critical 
rotation numbers near Roc < 0.022, which is in good agreement with experimental 
observations reported in detail in Johnston et al. (1972). These studies indicated 
that the appearance of the roll-cell structure as an instability of the rotating flow 
was essentially independent of the Reynolds number. Below Ro M 0.02, roll 
cells could not be detected by means of flow visualization, but they were regularly 
observed at Ro > 0.04. This result is readily explained by remembering that the 
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FIGURE 10. Neutral stability curves for roll-cell instabilities in rotating 
turbulent channel flow. 

2 ReaRo 

Re Roc 01, €1 &a Ret, Bets E;" 

2000 0.0162 4.25 5-68 3.74 352.1 534.8 3769 
3000 0.0174 4.30 8.69 5.35 346.2 560.8 4147 
6000 0.0216 4.40 17-65 9.98 339.9 601.2 4991 

11400 0-0230 4.35 32-51 17.65 380.7 6469 5658 
35000 0.0223 4.50 90.01 48.04 388.8 728.6 6742 

TABLE 1. Critical parameters for onset of roll instabilities in rotating 
turbulent channel flow 

effect of fluid friction upon the analogous thermal convection instabilities is one 
of pure damping. In  a similar manner, turbulent friction intensifies the resistance 
of the rotating flow to roll-cell instabilities. For instance, inspection of table 1 
shows that, over the range of 6000 < Re < 35000, E ,  increases proportionally 
with Re, thus causing only a small variation in the physically meaningful 
Reynolds number of the turbulent flow Re,,. In  fact, within the range of the 
fully-turbulent regime, we find that 

345 < Re,, = Re/€, < 390. 

Considering the close agreement with the visual studies, it is reasonable to con- 
clude that, in the experiments, the increased Coriolis forces at higher Re were 
offset by correspondingly larger friction forces, attributable to turbulence in- 
tensity. Since the stabilized opposite fluid layer makes only a negligible contri- 
bution in counteracting instabilities, the magnitude of e2 is of little consequence. 
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FIUURE 11. Neutral stability boundary for laminar Poiseuille and turbulent channel flow 
(two-layer model). [I, calculated neutral states ; -. -. -, estimated neutral states. 

Although in the transition from laminar to turbulent flow Re + 2000 the results 
should approach those obtained for Poiseuille flow (Re, w 0-0004) with Re,+Re, 
the computations of showed that the Cess eddy viscosity (appendix, (A 3)) 
does not vanish properly in this limit. For example, at the transitional Reynolds 
number Re = 2000, we have from table 1 el M 5.7 and Re,, M 352, indicating a 
turbulent flow. This shortcoming is reflected in the computed onset of instabilities 
at Roc M 0.015. 

The stability boundary separating the stable and unstable states in laminar 
and turbulent flow is shown in figure 11. Because of the uncertainty in deter- 
mining the magnitude of v, in the transition regime, we can presently only guess 
the location of the neutral boundary in this region. 

Computed eigenfunctions and stream functions for the case Re = 35000 are 
shown in figure 12. As a consequence of the constant eddy viscosity model, they 
bear close resemblance to the critical eigensolutions for the laminar case. A 
typical example of the actually observed cellular flow patterns at rotation 
numbers much larger than Roc is depicted in figure 13 (plate 1). In  this end-view 
photograph (the mean flow is out of the picture plane), the disturbance flow is 
indicated by the deformation of an originally straight hydrogen bubble time line. 
Although periodic, the instability does not exhibit the linear characteristic (i.e. 
spanwise sinusoidal variation) originally assumed in the analysis. Examination 
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FIGURE 12. Roll-cell instabilities in turbulent channel flow (two layer model). (a) Critical 
eigensolution, Roo = 0.0174, Re = 3000; ( b )  critical stream function, a = 4.3. Contours 
represent $ = 0.1 (0.1) 1.0. (c )  Critical eigensolution, Ra, = 0.0223, Re = 36000; ( b )  
critical stream function, cc = 4.5. Contours represent $ = 0.1 (0.1) 1.0. In  (e), 0 indicates 
the two points associated with (a), ( b )  and (c ) ,  (d). 

of many such photographs revealed that, at  high Ro, the cell centres tend to 
gravitate toward each other when the secondary flow between them is away from 
the wall. The motion picture films from which figure 13 was reproduced showed 
clearly that the wall fluid is essentially ejected through more or less regularly 
spaced narrows gaps in the overlying fluid layer that is forced toward ths un- 
stable wall by the mean Coriolis field. The resulting irregular spanwise variation 
of the induced flow is attributed to strong nonlinear interaction between the 
turbulent mean flow and the disturbance. At high 80, these flow components 
are of comparable magnitude in the wall region. Although the supercritical dis- 
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turbance flow shown in figure 13 is clearly outside the validity of linear stability 
analysis, the average cell number a M 5 of the two cells compares favourably 
with the predicted value of a M 4.4. Over the experimentally investigated range 
of Re and Ro, furthermore, the observed spanwise cell separations vary between 
a M 4.5 and a M 6, whereby the higher values apparently result a t  rotation rates 
considerably larger than Roc. The general agreement, then, between predicted 
and observed conditions for instabilities indicates that, despite the difficulty in 
detecting and observing the critical state experimentally in a turbulent flow, the 
sinusoidal spanwise cell variation may be considered a valid assumption for 
describing the instability at the point of onset. 

5. Conclusions 
We have considered the effects of Coriolis forces in rotating laminar and turbu- 

lent channel flow with respect to longitudinal roll-cell disturbances of the Taylor 
type. Analogies to  the disturbance equations for buoyancy-driven convection 
and classical Taylor instabilities provide immediate solutions for the marginal 
stability of two types of laminar plane flow considered. Couette flow with rotation 
in a direction opposite to the absolute vorticity of the fluid is dynamically analo- 
gous to BBnard convection and to the differentially heated Couette flow. As in 
the analogous cases, marginal stability is found when the parameter 

4 Re2 Ro( 1 - Ro) 

assumes the value of the critical Rayleigh number Ra, = 1708; hence, the 
range of instability lies in 0 < Ro < 1. 

For the disturbance equations of laminar plane Poiseuille flow in rotation, 
we find analogous counterparts in the equations describing hydrodynamic 
instability of the internally heated fluid layer, and of the flow within a narrow 
gap between rotating cylinders. Marginally stable solutions for roll-cell distur- 
bances can be derived from Chandrasekhar’s solutions for the rotating cylinder 
problem by setting the stability parameter for Poiseuille flow equal to the Taylor 
number: 4 Re2 Ro( 3 - Ro) = Ta. The requirement Ta > 0 then limits instabilities 
to the range 0 < Ro < 3, independent of the sign of the rotation. Below the 
calculated critical Reynolds numbers, however, the flow is stable with respect 
to all disturbance modes. 

The complexities of turbulent flow require several assumptions, in order to 
keep the disturbance equationsin a tractable form. To this end, a two-layer model, 
with a constant eddy viscosity in each layer, appears to afford a sufficient 
degree of simplification. The resulting quasi-linear description of the turbulent 
mean flow, nevertheless, incorporates a physically accurate velocity profile and 
average eddy viscosity levels that are apparently representative of the effects 
of turbulent friction in the stable and unstable fluid layers. The numerical 
solutions predict onset of instabilities above Ro M 0.02 for channel Reynolds 
numbers between 6000 and 35000. These values agree quite closely with the 
experimental observations. 
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Appendix 

for the mean profile gradient 
Turbulent mean velocity profiles are computed by integrating an expression 

( 1  + m R 0 - 2 y )  
= * R e B o [ l  +ut,(y)/u]f(p,Ri)’ 

subject to the continuity condition 

Equation (A 1) is derived from the assumption that, in fully-developed turbulent 
channel flow, the turbulent mean shear stress T varies linearly between walls. 
Hence. 

Bo is the non-dimensional shear stress gradient without rotation. Rotational 
effects upon wall shear stresses are accounted for by the factor m Ro. 

The Cess (1958) eddy viscosity without rotation is given by 

For two-dimensional channel geometry, 

F(y )  = ~ ( Y - Y ~ ) ( ~ - ~ Z J - ~ Z J ~ ) .  (A 4) 

K = 0-45 and A+ = 29 are the applicable von K k m h  constant and sublayer 
thickness parameter, respectively. 

Local effects of rotation upon total viscosity are a function of the local 
Richardson number Ri, as expressed by the Monin-Oboukhov formula 

(A 5) f(P, Ri) = (1 +PRi)-l. 

(See Bradshaw 1969.) /3 = 4 is an empirical parameter that influences the profile 
shape of bi(y). As in buoyancy-driven flows, the Richardson number provides a 
measure of local fluid stability. I n  rotating channel flow, therefore, 

Ri = - 2 Ro( Ui - 2Ro) / (  Ui)2. (A 6) 

In  order to avoid numerical difficulties when (A 1) is integrated iteratively, it  
is necessary to redefine Ri in the central flow region so that 

Ri = 0 when Ui = 0. 

Predicted mean velocity profiles are compared with experimental measurements 
in Lezius & Johnston (1971).  
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FIGURE 14. Co-ordinates and velocity profiles in plane, rotating channel flow: (i) plane 
Couette flow; (ii) plane Poiseuille flow; (iii) turbulent channel flow. 

In  the stability analysis we let, for convenience, 

(See equation (28).) For, except in the extremely thin laminar sublayer 

(S,,,/ZD M 5 x v,(y)/v > 1. 
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FIGURE 13. End-view photograph of roll-cell instabilities in rotating turbulent clinnnel 
flow, Re = 6900, R o  = 0.32. 
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